

 \bigcirc

WATER TREATMENT

APPLICATIONS AND PROCESS BASIC INTRODUCTION

 \bigcirc

WHERE DOES WATER COME FROM ?

	ST Microscope	ning Electron Microscope	Optical Microscope	Naked Ey	0	
	Ionic Range Molecul	ar Range Macro Molecu	ular Range Micro Partic	le Range Macro Pa	ticle Range	
Micrometers (µ)	0.001	0.01 0.1	1.0	10.0 100.0	1000.0	
RELATIVE SIZE OF COMMON MATERIALS	Aqueous Salts Endoto:	Albumin Protein Carbon Black	Paint Pigment BACTERIA	ast Cells	Beach Sand	
	Metal Ion Synthetic Dye	Tobacco Si	moke Mi Latex/Emulstion	lled Flour	Activated Carbon	
	Pesticide Herbicide	Colloidal Silica Asb	Blue Indigo Dye R Blue Stos	ed Pollen ells Human Hair		
		Gelatin	Crypt- ospor- Idium	Glardia Mist		
MEMBRANE	REVERSE OSMOSIS	E OSMOSIS ULTRAFILTRATION		PARTICLE FILTRATION		
	NANOFILTRATION	MICR	OFILTRATION			

PROCESS COMBINATIONS

Water Related Problems :

- Suspended Solids Flocculation / Ultra Filtration
- PH Acid or Caustic addition
- Colour Flocculation / Filtration
- Odour Granular Activated Carbon / Ozone / Chlorine
- Ammonia Ozone
- Taste Granular activated carbon
- Salts Ca, Mg, Na, Cl, SO4 etc RO / NF / IX / Distillation
- Fluoride Activated Alumina / IX / RO / NF
- Iron / Manganese KDF / Birm / Greensand / Ozone
- Bacteria and Viruses Chlorine / UF / UV / Ozone chlorine dioxide

TREATMENT OPTIONS SEDIMENT AND BACTERIA

FLOCCULATION AND CLARIFICATION FOLLOWED BY DISINFECTION

Surface Water Treatment Plant

Distribution

FILTRATION AND DISINFECTION

- Sand
- Multimedia
- Ag plus
- Self cleaning Fine screen filters
- Bag filters

Ozone

PROBLEM SALTS

- SALTS REVERSE OSMOSIS
- HARDNESS NANOFILTRATION
- IRON BIRM / GREENSAND
- FLUORIDE ACTIVATED ALUMINA
- NITRATES / CYANIDE ION EXCHANGE RESIN

REQUIREMENTS TO SOLVE WATER PROBLEMS

- WATER SOURCE MUNICIPLE, WELL, BOREHOLE, RIVER, EFFLUENT, SEA
- WATER TEST ESSENTIAL
- HOW MUCH WATER IS REQUIRED PER DAY OR PER HOUR WE WORK ON 200 250 LITRES / DAY
 PER PERSON BUT DRINKING WATER IS USUALLY 2 5 LITRES / DAY
- DO THEY HAVE INFRASTRUCTURE LIKE POWER, PUMPS, DAMS, BUILDINGS OR ANY SKILLED OR SEMISKILLED LABOUR
- WHAT IS THE FINAL APPLICATION POTABLE WATER / PHARMACEUTICAL /PROCESS / AGRICULTURE
 ?

THE MORE INFORMATION WE HAVE THE EASIER IT IS TO FIND A COST EFFECTIVE SOLUTION